新型建材

当前位置:   主页 > 新型建材 >

临池镇新机电直连式BD120A-L2-100-B2-S9恒温步进减速机

文章来源:ymcdkj 发布时间:2024-05-10 01:07:56

B2-S9恒温步进减速机
铝基复合材料属于典型的金属基复合材料,主要分为连续纤维增强铝基复合材料和颗粒增强铝金属基复合材料。近年来,颗粒增强铝基复合材料解决了连续纤维增强金属基复合材料过程复杂、工艺不成熟、成本过高等问题,生产成本大大降低,上已逐步将注意力转移到颗粒增强铝基复合材料的研究上,各国对其需求量逐渐增大。虽然颗粒增强铝基复合材料的综合性能优越,但其低塑性、在微观上的不均匀性以及超硬陶瓷增强相的加入使其难于切削。


行星齿轮减速机工作原理:
1)齿圈固定,太阳轮主动,行星架被动。 此种组合为降速传动,通常传动比一般为2.5~5,转向相同。
2)齿圈固定,行星架主动,太阳轮被动。此种组合为升速传动,传动比一般为0.2~0.4,转向相同。
3)太阳轮固定,齿圈主动,行星架被动。此种组合 相同。
4)太阳轮固定,行星架主动,齿圈被动。此种组合为升速传动,传动比一般为0.6~0.8,转向相同。
5)行星架固定,太阳轮主动,齿圈被动。传动比一般为1.5~4,转向相反。
6)行星架固定,齿圈主动,太阳轮被动。此种组合为升速传动,传动比一般为0.25~0.67,转向相反。
7)把三元件中任意两元件结合为一体的情况:当把行星架和齿圈结合为一体作为主动件,太阳轮为被动件或者把太阳轮和行星架结合为一体作为主动件,齿圈作为被动件的运动情况。行星齿轮间没有相对运动,作为一个整体运转,传动比为1,转向相同。汽车上常用此种组合方式组成直接档。
8)三元件中任一元件为主动,其余的两元件自由:从分析中可知,其余两元件无确定的转速输出。



当驱动电机和行星减速机间装配同心度保证得较好时,驱动电机输出轴所承受的仅仅是转动力(扭矩),运转时也会很平顺,没有脉动感。而在不同心时,驱动电机输出轴还要承受来自于行星减速机输入端的径向力(弯矩)。
这个径向力的作用将会使驱动电机输出轴被迫弯曲,而且弯曲的方向会随着输出轴转动不断变化。如果同心度的误差较大时,该径向力使电机输出轴局部温度升高,其金属结构不断被破坏, 终将导致驱动电机输出轴因局部疲劳而折断。两者同心度的误差越大时,驱动电机输出轴折断的时间越短。在驱动电机输出轴折断的同时,减行星速机输入端同样也会承受来自于驱动电机输出轴方面的径向力,如果这个径向力超出减速机输入端所能承受的径向负荷的话,其结果也将导致减速机输入端产生变形甚至断裂或输入端支撑轴承损坏。因此,在装配时保证同心度至关重要!从装配工艺上分析,如果驱动电机轴和减速机输入端同心,那么驱动电机轴面和减速机输入端孔面间就会很吻合,它们的接触面紧紧相贴,没有径向力和变形空间。而装配时如果不同心,那么接触面之间就会不吻合或有间隙,就有径向力并给变形了空间。
同样,行星减速机的输出轴也有折断或弯曲现象发生,其原因与驱动电机的断轴原因相同。但减速机的出力是驱动电机出力和减速比之积,相对于电机来讲出力更大,故减速机输出轴更易被折断。因此,用户在使用减速机时,对其输出端装配时同心度的保证更应十分注意!



行星减速机采用全新斜齿齿轮设计
摘要:直齿轮的缺点主要在于它们会产生振动。不论是由于设计、或形变等方面的原因,在同一时刻沿整个齿面上可能发生渐线外形的一些变化。这将导致一个有规律的,每齿一次的激励,它常是很强烈的。由此产生的振动既在齿轮上引起大的负载,又引起噪声。还有一个不利点是,在接触时间里有时由两对齿啮合所得到的附加强度并不能加以利用,因为应力是被循环中单齿啮合的状况所限定的。
斜齿轮可看成是由一组薄片宜齿齿轮错位放置成的圆柱齿轮,这样每一片的接触是在齿廓的不同部位,从而产生了补偿每个薄片齿轮误差的作用,这个补偿作用由于轮齿的性而非常有效,因而得出这样的结果,误差在10mm以内的轮齿能够使误差起平均作用,因而在有负载情况下,能如误差为1mm内的轮齿那样平稳运行。因为在任何瞬时,大约有一半时间(定重合度约为1.5)将有两个齿啮合,这就在强度方面带来额外的好处。因此应力可建立在1.5倍齿宽,而不是一个齿宽的基础上。
和装配一大堆薄片直齿轮是既困难又不经济,因此就成连成一体的,轮齿沿螺旋线方向的齿轮。斜齿轮不象直齿轮,它会导致 的轴向力。但在振动和强度方面带来的好处远胜于由轴向推力和略增的成本带来的缺点。因此在减速机中选用斜齿轮而非直齿轮.比如四大系列:同轴式斜齿轮减速机、螺旋锥齿轮减速机、斜齿轮蜗轮蜗杆减速机、平行轴斜齿轮减速机。